- Pendahuluan ( Stely N. Tarigan )
Quantum
Komputasi terdiri dari 2 kata yaitu “Quantum” dan “Komputasi”. Quantum artinya
jumlah/quantity tanpa batas, dan Komputasi artinya ilmu komputer dimana
algoritma digunakan untuk menemukan suatu cara dalam memecahkan masalah dari
sebuah data input. Sehingga Quantum Komputasi adalah suatu bidang studi yang
berperan pada perkembangan teknologi komputer yang didasari prinsip-prinsip
teori kuantum, yang menjelaskan sifat dan perilaku energi dan materi pada tingkat
kuantum (atom dan subatom).
Komputer
Kuantum disini merupakan komputer/alat hitung yang menggunakan sebuah fenomena
mekanika kuantum, seperti superposisi dan keterkaitan, untuk melakukan operasi
data. Dalam komputer pada umumnya untuk menghitung jumlah data dengan
menggunakan bit, sedangkan dalam komputer kuantum sudah menggunakan qubit.
Pengembangan
komputer dengan sistem kuantum memerlukan algoritma baru yang sesuai dengan
prinsip kuantum. Beberapa fisikawan seperti Charles H. Bennett dari IBM, Paul
A. Benioff dari Argonne National Laboratory, Richard P. Feynman dari California
Institute of Technology (Caltech).
Sistem
kuantum yang dapat melakukan proses penghitungan merupakan suatu ide yang
dikemukakan oleh Richard P. Feynman dan sistem ini bisa menjadi simulator
percobaan fisika kuantum. Sehingga para ilmuwan mulai melakukan riset mengenai
sistem kuantum tersebut. Saat ini telah ditemukan dua algoritma baru yang bisa
digunakan dalam sistem kuantum yaitu algoritma shor dan algoritma grover.
Contohnya adalah pemfaktoran (factoring) sebuah bilangan besar masih terlalu
sulit bagi komputer meskipun mudah untuk diverifikasi. Itulah sebabnya
pemfaktoran bilangan besar ini banyak digunakan dalam metode kriprografi untuk
melindungi data.
- Entanglement ( Cynthia Diana S. )
Entanglement
merupakan efek dari mekanik kuantum yang mengaburkan jarak antara partikel
individual sehingga sulit untuk menggambarkan partikel tersebut terpisah
walaupun anda berusaha untuk memindahkan mereka. Entanglement juga merupakan
gambaran partikel yang dapat berkorelasi dan diprediksi berinteraksi satu sama
lain tanpa terpaut jarak. Entanglement secara teoritis dapat mempercepat
komputasi dan diyakini dapat memecahkan batasan pada komputer dan kuantum.
Kuantum
entanglement adalah bagian dari fenomena kuantum mechanical yang menyatakan
bahwa dua atau lebih objek dapat digambarkan mempunyai hubungan dengan objek
lainnya walaupun objek tersebut berdiri sendiri dan terpisah dengan objek
lainnya. Fenomena ini dimanfaatkan oleh ilmuan dalam pembuatan Quantum Computing.
Einstein
mengkritisi teori kuantum mechanical, ia menunjukkan kelemahan dari teori
tersebut yang menggunakan entanglement merupakan sesuatu yang “spooky action
at a distance” karena Einstein tidak
mempercayai bahwa partikel kuantum dapat mempengaruhi partikel lainnya melebihi
cahaya. Kuantum entanglement dapat diimplementasi dalam berbagai bidang seperti
pengiriman pesan rahasia yang sulit untuk di-enkripsi dan pembuatan komputer
yang mempunyai performa cepat.
- Pengoperasian Data Qubit ( Kemal Nurfajri )
Jika pada komputer klasik
terdapat bit sebagai memorinya, komputer kuantum menggunakan qubit atau quantum
bit sebagai memori dasar informasi. Perbedaan antara bit dan qubit adalah jika
bit pada suatu waktu hanya dapat merepresentasikan satu state saja yaitu 0 atau
1, qubit dapat merepresentasikan 0, 1 atau gabungan keduanya yang disebut
dengan quantum superposition. Jadi, jika n
bit hanya dapat merepresentasikan salah satu dari 2n states, n qubit
dapat merepresentasikan 2n
states tersebut secara bersamaan atau lebih mudahnya 1 qubit dapat menampung
lebih dari 1 bit.
Suatu komputer quantum
mengoperasikan qubit menggunakan quantum
gates dan measurments. Dimana
perhitungan dimulai menggunakan quantum
gates dan berakhir pada measurments yang
menghasilkan classical states.
- Duantum Gates ( Fitri Ayu & Novita Rakhmawati )
Gerbang
kuantum atau gerbang logika kuantum adalah rangkaian kuantum dasar yang
beroperasi pada sejumlah kecil qubit . Mereka adalah analog untuk komputer
kuantum ke gerbang logika klasik untuk komputer digital konvensional. Logika
logika kuantum bisa dibalik , tidak seperti banyak gerbang logika klasik.
Beberapa gerbang logika klasik universal, seperti gerbang Toffoli , memberikan
reversibilitas dan dapat dipetakan secara langsung ke gerbang logika kuantum.
Gerbang logika kuantum diwakili oleh matriks-matriks kesatuan .
Gerbang
kuantum yang paling umum beroperasi pada ruang satu atau dua qubit. Ini berarti
bahwa sebagai matriks, gerbang kuantum dapat digambarkan dengan matriks 2 x 2
atau 4 x 4 dengan baris ortonormal .
Ingat
Penyelidikan gerbang logika kuantum tidak terkait dengan logika kuantum , yang
merupakan formalisme dasar untuk mekanika kuantum berdasarkan modifikasi
beberapa aturan logika proposisional .
Berikut ini
merupakan contoh dari gerbang kuantum :
Gerbang Hadamard
Gerbang ini beroperasi dengan qubit tunggal. Hal ini ditunjukkan oleh matriks Hadamard:
Karena baris matriks bersifat ortogonal, H memang merupakan
matriks kesatuan.
Fase shifter gates
Gates di kelas ini beroperasi dengan qubit tunggal. Mereka diwakili oleh 2 x 2 matriks dari bentuknya dimana θ adalah pergeseran fasa .
Gerbang Terkendali
Misalkan U adalah gerbang yang beroperasi pada qubit tunggal dengan representasi matriks
Gerbang terkontrol U adalah gerbang yang beroperasi pada dua qubit sedemikian rupa sehingga qubit pertama berfungsi sebagai kontrol.
|00⟩ ↦ |00⟩
|01⟩ ↦ |01⟩
|10⟩ ↦ |1⟩ U | 0⟩ = |1⟩ ( x 00|0⟩ + x 01|1⟩)
|11⟩ ↦ |1⟩ U | 1⟩ = |1⟩ ( x 10| 0⟩ + x 11| 1⟩)
Dengan demikian matriks gerbang U yang dikontrol adalah sebagai berikut:
Gerbang Tak Terkendali
Karena gerbang ini bisa direduksi menjadi gerbang yang lebih elementer, biasanya tidak termasuk dalam repertoar dasar gerbang kuantum. Disebutkan disini hanya untuk kontras dengan gerbang yang dikontrol sebelumnya.
Universal Quantum Gates
Satu set gerbang kuantum universal adalah seperangkat gerbang yang memungkinkan operasi pada komputer kuantum dapat dikurangi. Satu set sederhana dari gerbang kuantum universal dua qubit adalah gerbang Hadamard ( H ), gerbang rotasi fase , dan gerbang yang dikendalikan-TIDAK , sebuah kasus khusus yang dikendalikan-U sedemikian itu
Sebuah gerbang tunggal yang terdiri dari gerbang kuantum universal juga dapat diformulasikan dengan menggunakan gerbang Deutsch tiga-qubit, D ( θ )
Gerbang logika klasik universal, gerbang Toffoli , dapat direduksi menjadi gerbang Deutsch, , sehingga menunjukkan bahwa semua operasi logika klasik dapat dilakukan pada komputer kuantum universal.
- Algoritma Shor ( Alfan Fadhila )
Algoritma Shor merupakan algoritma
yang ditemukan oleh Peter Shor pada tahun 1995. Sebuah komputer kuantum dapat
memecahkan sebuah kode rahasia yang saat ini secara umum digunakan untuk
mengamankan pengiriman data. Jika data disandikan melalui kode RSA, data yang
dikirimkan akan aman karena kode RSA tidak dapat dipecahkan dalam waktu yang
singkat. Selain itu, pemecahan kode RSA membutuhkan kerja ribuan komputer
secara paralel sehingga kerja pemecahan ini tidaklah efektif.
Algoritma yang berdasarkan
dari sebuah teori bilangan: fungsi F(a) = xamod n adalah fungsi
periodik jika x adalah bilangan bulat yang relatif prima dengan n. Dalam
Algoritma Shor, n akan menjadi bilangan bulat yang hendak difaktorkan.
Bila menghitung fungsi
tersebut pada komputer konvensional untuk jumlah yang eksponensial, akan
membutuhkan waktu eksponensial pula. Pada masalah ini algoritma quantum shor
memanfaatkan pararellisme quantum untuk melakukannya hanya dengan satu langkah.
Dikarenakan F(A) adalah
fungsi periodik, jadi fungsi ini memiliki sebuah periode r. Diketahui x0mod
n = 1, maka xr mod n = 1, begitu juga x2r mod n dan
seterusnya.
Dengan informasi ini
dan manipulasi persamaan sederhana berikut:
xr ≡
1 mod n
(xr/2)2
≡ 1 mod n
(xr/2)2
– 1 ≡ 0 mod n
Dengan anggapan r
adalah angka genap:
(xr/2 –
1)(xr/2 + 1) ≡ 0 mod n
Dapat dilihat bahwa
hasil dari (xr/2 – 1)(xr/2 + 1) adalah kelipatan n. Maka
selama |xr/2| ≠ 1, setidaknya salah satu dari (xr/2 – 1)
atau (xr/2 + 1) memiliki faktor yang sama dengan n. Maka, dengan
menghitung gcd(xr/2 – 1,n) dan gcd(xr/2 + 1,n) faktor dari n akan
didapat.
Lain halnya untuk
menghitung r dari persamaan xr ≡ 1 mod n akan membutuhkan waktu
eksponensial di komputer konvensional. Oleh karena itu proses ini perlu
dijalankan dengan komputer quantum agar seluruh nilai superposisi akan
terhitung dalam sekali jalan.
Langkah - langkah Algoritma Shor
Masalah yang hendak dipecahkan adalah: Diketahui sebuah bilangan komposit N, dicari sebuah bilangan bulat x dengan x bernilai 1 < x < N. Algoritma Shor
untuk mencari faktor dari bilangan bulat n, dapat dipecah menjadi
langkah-langkah berikut: